DATA SCIENCE AND ARTIFICIAL INTELLIGENCE: A POWERFUL COMBINATION FOR DECISION MAKING
Keywords:
Data Science, Artificial Intelligence (AI), Decision Making, Machine Learning (ML)Abstract
The convergence of data science and artificial intelligence (AI) presents a powerful opportunity to revolutionize decision-making processes across various domains. This paper conducts a comprehensive analysis of the utilization of data science and AI techniques to enhance decision-making capabilities. Real-world applications, methodologies, and case studies, we uncover the transformative potential of leveraging advanced analytics and AI algorithms for informed decision-making. Through a detailed examination of the synergies between data science and AI, this study elucidates the key factors contributing to their effectiveness in improving decision outcomes. Practical considerations, challenges, and future directions are discussed, providing insights into maximizing the value of this dynamic combination in diverse decision-making contexts. This paper serves as a roadmap for organizations seeking to harness the full potential of data science and AI to drive strategic, data-driven decision-making processes.
References
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., &Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.
Chen, J., &Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acmsigkdd international conference on knowledge discovery and data mining (pp. 785-794).
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... &Vallor, S. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689-707.
Jakkula, A. R. (2024). Ensuring Data Privacy and Security in AI-Enabled E-commerce Platforms. Journal of Artificial Intelligence & Cloud Computing, 3(1), 1-3.
Goodfellow, I., Bengio, Y., &Courville, A. (2016). Deep learning (Vol. 1). MIT press Cambridge.Kleinberg, J., Ludwig, J., Mullainathan, S., &Sunstein, C. R. (2018). Discrimination in the age of algorithms.Journal of Legal Analysis, 10(1), 113-174.
Jakkula, A. R. (2024). Navigating Data-Driven Decisions in E-Commerce. Journal of Marketing & Supply Chain Management, 3(1), 1-2.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., &Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679.
Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O'Reilly Media, Inc.
Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Zhang, K. (2018). Scalable and accurate deep learning with electronic health records. NPJ digital medicine, 1(1), 1-10.
Jakkula, A. R. (2023). Predictive Analytics in E-Commerce: Maximizing Business Outcomes. Journal of Marketing & Supply Chain Management, 2(2), 1-3.
Russell, S., &Norvig, P. (2021). Artificial intelligence: A modern approach. Pearson.
Tsai, C. F., Huang, I. B., & Liao, Y. H. (2020). Predicting financial fraud in the publicly traded firms by computational intelligence algorithms: An integrated framework of feature selection, data preprocessing, and hybrid machine learning. Journal of Business Research, 117, 518-528.
Verhoef, P. C., Venkatesan, R., McAlister, L., Malthouse, E. C., Krafft, M., &Ganesan, S. (2010). Creating value with big data analytics: Making smarter marketing decisions. Journal of Interactive Marketing, 28(2), 137-156.
Jakkula, A. R. (2023). Building AI Tools for Non-Technical Users: A Case Study Approach. Journal of Scientific and Engineering Research, 10(4), 127-132.
Zou, J. Y., Schiebinger, L., Bhalla, N. I., Lancet, D., Rajpurkar, P., Shue, L., ... & Ng, A. Y. (2020). Gender bias in natural language processing: Literature review. arXiv preprint arXiv:2103.09912.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354-359.
Jakkula, A. R. (2023). Integrating AI in E-commerce Platforms: Exploring the Future of Shopping. Journal of Technological Innovation, 4(1), 1-4.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.
Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
Gil, Y., & Selman, B. (2019). A 20-year community roadmap for artificial intelligence research in the US. Communications of the ACM, 62(12), 57-67.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 1-10.
Varshney, K. R., & Alemzadeh, H. (2017). On the safety of machine learning: Cyber-physical systems, decision sciences, and data products. Big Data, 5(3), 246-255.
O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Prathipa. A. R (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.