AI-DRIVEN DATA ANALYTICS TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHTS

Authors

  • Harish Narne Application Engineer, UiPath Inc, USA. Author

Keywords:

AI-driven Insights, Big Data Transformation, Actionable Intelligence, Data Analytics, Machine Learning Algorithms

Abstract

Organisations who are interested in maximising the potential of digital data have a difficulty as well as an opportunity as a result of the exponential increase of digital data in the modern environment. The goal of this abstract is to delve into the impact of AI-driven insights on the process of turning massive volumes of Big Data into actionable intelligence. As businesses struggle to cope with the difficulties of data management, artificial intelligence is becoming an increasingly important force. With the help of its robust algorithms and machine learning capabilities, businesses are able to sift through mountains of data in search of useful trends, patterns, and correlations. Organisations can do more with their data than just make sense of it; artificial intelligence (AI) technologies can turn data into strategic and practical insights. In today's fast-paced corporate world, this empowers decision-makers to promote innovation, enhance operational efficiency, and obtain a competitive advantage.

References

Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial intelligence in the agri-food system: Rethinking sustainable business models in the COVID-19 scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]

López-Robles, J.R.; Otegi-Olaso, J.R.; Gómez, I.P.; Cobo, M.J. 30 years of intelligence models in management and business: A bibliometric review. Int. J. Inf. Manag. 2019, 48, 22–38. [Google Scholar] [CrossRef]

Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]

Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 1, 1165–1188. [Google Scholar] [CrossRef]

Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]

Davenport, T.H.; Ronanki, R. Artificial intelligence for the real world. Harv. Bus. Rev. 2018, 96, 108–116. [Google Scholar]

Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef] [Green Version]

Colson, E. What AI-Driven Decision Making Looks Like. Harvard Business Review. 2019. Available online: https://hbr.org/2019/07/what-ai-driven-decision-making-looks-like (accessed on 15 January 2023).

Lichtenthaler, U. Extremes of acceptance: Employee attitudes toward artificial intelligence. J. Bus. Strategy 2020, 41, 39–45. [Google Scholar] [CrossRef]

Wiener, M.; Saunders, C.; Marabelli, M. Big-data business models: A critical literature review and multiperspective research framework. J. Inf. Technol. 2020, 35, 66–91. [Google Scholar] [CrossRef]

Ardito, L.; Scuotto, V.; Del Giudice, M.; Petruzzelli, A.M. A bibliometric analysis of research on Big Data analytics for business and management. Manag. Decis. 2019, 57, 1993–2009. [Google Scholar] [CrossRef]

Batistič, S.; van der Laken, P. History, evolution and future of big data and analytics: A bibliometric analysis of its relationship to performance in organizations. Br. J. Manag. 2019, 30, 229–251. [Google Scholar] [CrossRef] [Green Version]

Khanra, S.; Dhir, A.; Mäntymäki, M. Big data analytics and enterprises: A bibliometric synthesis of the literature. Enterp. Inf. Syst. 2020, 14, 737–768. [Google Scholar] [CrossRef]

Wamba, S.F.; Bawack, R.E.; Guthrie, C.; Queiroz, M.M.; Carillo, K.D.A. Are we preparing for a good AI society? A bibliometric review and research agenda. Technol. Forecast. Soc. Chang. 2021, 164, 120482. [Google Scholar] [CrossRef]

Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]

Hu, F.; Liu, W.; Tsai, S.-B.; Gao, J.; Bin, N.; Chen, Q. An empirical study on visualizing the intellectual structure and hotspots of big data research from a sustainable perspective. Sustainability 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]

Abdollahi, A.; Rejeb, K.; Rejeb, A.; Mostafa, M.M.; Zailani, S. Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis. Sustainability 2021, 13, 12011. [Google Scholar] [CrossRef]

Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]

Morato, J.; Sanchez-Cuadrado, S.; Iglesias, A.; Campillo, A.; Fernández-Panadero, C. Sustainable technologies for older adults. Sustainability 2021, 13, 8465. [Google Scholar] [CrossRef]

Cano, J.A.; Londoño-Pineda, A.; Castro, M.F.; Paz, H.B.; Rodas, C.; Arias, T. A Bibliometric Analysis and Systematic Review on E-Marketplaces, Open Innovation, and Sustainability. Sustainability 2022, 14, 5456. [Google Scholar] [CrossRef]

Giuffrida, N.; Fajardo-Calderin, J.; Masegosa, A.D.; Werner, F.; Steudter, M.; Pilla, F. Optimization and machine learning applied to last-mile logistics: A review. Sustainability 2022, 14, 5329. [Google Scholar] [CrossRef]

Samuel, G.; Lucivero, F.; Somavilla, L. The Environmental Sustainability of Digital Technologies: Stakeholder Practices and Perspectives. Sustainability 2022, 14, 3791.

Downloads

Published

2023-12-29

How to Cite

AI-DRIVEN DATA ANALYTICS TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHTS. (2023). INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING (IJAIML), 2(01), 142-154. https://lib-index.com/index.php/IJAIML/article/view/IJAIML_02_01_014