SEGMENT ANYTHING MODEL (SAM) FOR BRAIN EXTRACTION IN fMRI STUDIES
Keywords:
Segment Anything Model (SAM), FMRI, Segmentation, Neuroimaging, Brain ExtractionAbstract
Brain extraction and removal of skull artifacts from magnetic resonance images (MRI) is an important preprocessing step in neuroimaging analysis. There are many tools developed to handle human fMRI images, which could involve manual steps for verifying results from brain segmentation that makes it time consuming and inefficient. In this study, we will use the segment anything model (SAM), a freely available neural network released by Meta[4], which has shown promising results in many generic segmentation applications. We will analyze the efficiency of SAM for neuroimaging brain segmentation by removing skull artifacts. The results of the experiments showed promising results that explore using automated segmentation algorithms for neuroimaging without the need to train on custom medical imaging dataset.
References
Tsang O, Gholipou A, Kehtarnavaz N, Gopinath K, Briggs R, Panahi I. Comparison of tissue segmentation algorithms in neuroimage analysis software tools. In: Proceedings of the 30th International Conference of the IEEE in Engineering in Medicine and Biology Society 2008;3924–3928.
Valverde, S., Oliver, A., Cabezas, M., Roura, E., Lladó, X., 2015. Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations. Journal of Magnetic Resonance Imaging 41, 93- 101.10.1002/jmri.24517
S. Bonte, I. Goethals, and R. H. Van, ‘‘Machine learning based brain Tumour segmentation on limited data using local texture and abnormality,’’ Comput. Biol. Med., vol. 98, pp. 39–47, 2018.
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. 2023. Segment Anything. arXiv preprint arXiv:2304.02643 (2023).
Evans, A. C., Kamber, M., Collins, D. L., and Macdonald, D. 1994. An MRI-based probabilistic atlas of neuroanatomy. In Magnetic Resonance Scanning and Epilepsy (S. Shorvon, D. Fish, F. Andermann, G. M. Bydder, and H. Stefan, Eds.), NATO ASI Series A, Life Sciences, Vol. 264. pp. 263–274. Plenum, New York.
Van Essen, D. C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).
Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
Geert L, Thijs K, Babak EB, Arnaud AAS, Francesco C, Mohsen G, Jeroen AWM, van Bram G, Clara IS. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021. 5, 8, 16
Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones for object detection. ECCV, 2022. 5, 10, 11, 16, 21, 23, 24
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. ICML, 2021. 1, 2, 4, 5, 8, 12, 16, 22
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with Transformers. ECCV, 2020. 5, 16, 17
Bowen Cheng, Alex Schwing, and Alexander Kirillov. Perpixel classification is not all you need for semantic segmentation. NeurIPS, 2021. 5, 16, 17
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017. 5, 16
Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO, Miller E, Hardcastle N, Wexler J, Esteban O, Goncavles M, Jwa A, Poldrack R. 2021. The OpenNeuro resource for sharing of neuroscience data. eLife
:e71774. DOI: https://doi.org/10.7554/eLife.71774, PMID: 34658334
Yingying Wang and Hongmi Lee and Brice Kuhl (2023). Ds004590. OpenNeuro. [Dataset] doi: doi:10.18112/openneuro.ds004590.v1.0.0
Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., Handwerker, D.A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B.N., Nichols, T.E., Pellman, J., Poline, J.-B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J.A., Varoquaux, G., Poldrack, R.A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3 (160044)
Dwith CYN, Vivek A, Amarjot S. Wavelet Based Image Fusion for Detection of Brain Tumor. Int J Image. Graphics and Signal Processing 2013; 1: 25-31.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Dwith Chenna , Suyash Bhogawar (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.